11 research outputs found

    Machine learning-based automated segmentation with a feedback loop for 3D synchrotron micro-CT

    Get PDF
    Die Entwicklung von Synchrotronlichtquellen der dritten Generation hat die Grundlage für die Untersuchung der 3D-Struktur opaker Proben mit einer Auflösung im Mikrometerbereich und höher geschaffen. Dies führte zur Entwicklung der Röntgen-Synchrotron-Mikro-Computertomographie, welche die Schaffung von Bildgebungseinrichtungen zur Untersuchung von Proben verschiedenster Art förderte, z.B. von Modellorganismen, um die Physiologie komplexer lebender Systeme besser zu verstehen. Die Entwicklung moderner Steuerungssysteme und Robotik ermöglichte die vollständige Automatisierung der Röntgenbildgebungsexperimente und die Kalibrierung der Parameter des Versuchsaufbaus während des Betriebs. Die Weiterentwicklung der digitalen Detektorsysteme führte zu Verbesserungen der Auflösung, des Dynamikbereichs, der Empfindlichkeit und anderer wesentlicher Eigenschaften. Diese Verbesserungen führten zu einer beträchtlichen Steigerung des Durchsatzes des Bildgebungsprozesses, aber auf der anderen Seite begannen die Experimente eine wesentlich größere Datenmenge von bis zu Dutzenden von Terabyte zu generieren, welche anschließend manuell verarbeitet wurden. Somit ebneten diese technischen Fortschritte den Weg für die Durchführung effizienterer Hochdurchsatzexperimente zur Untersuchung einer großen Anzahl von Proben, welche Datensätze von besserer Qualität produzierten. In der wissenschaftlichen Gemeinschaft besteht daher ein hoher Bedarf an einem effizienten, automatisierten Workflow für die Röntgendatenanalyse, welcher eine solche Datenlast bewältigen und wertvolle Erkenntnisse für die Fachexperten liefern kann. Die bestehenden Lösungen für einen solchen Workflow sind nicht direkt auf Hochdurchsatzexperimente anwendbar, da sie für Ad-hoc-Szenarien im Bereich der medizinischen Bildgebung entwickelt wurden. Daher sind sie nicht für Hochdurchsatzdatenströme optimiert und auch nicht in der Lage, die hierarchische Beschaffenheit von Proben zu nutzen. Die wichtigsten Beiträge der vorliegenden Arbeit sind ein neuer automatisierter Analyse-Workflow, der für die effiziente Verarbeitung heterogener Röntgendatensätze hierarchischer Natur geeignet ist. Der entwickelte Workflow basiert auf verbesserten Methoden zur Datenvorverarbeitung, Registrierung, Lokalisierung und Segmentierung. Jede Phase eines Arbeitsablaufs, die eine Trainingsphase beinhaltet, kann automatisch feinabgestimmt werden, um die besten Hyperparameter für den spezifischen Datensatz zu finden. Für die Analyse von Faserstrukturen in Proben wurde eine neue, hochgradig parallelisierbare 3D-Orientierungsanalysemethode entwickelt, die auf einem neuartigen Konzept der emittierenden Strahlen basiert und eine präzisere morphologische Analyse ermöglicht. Alle entwickelten Methoden wurden gründlich an synthetischen Datensätzen validiert, um ihre Anwendbarkeit unter verschiedenen Abbildungsbedingungen quantitativ zu bewerten. Es wurde gezeigt, dass der Workflow in der Lage ist, eine Reihe von Datensätzen ähnlicher Art zu verarbeiten. Darüber hinaus werden die effizienten CPU/GPU-Implementierungen des entwickelten Workflows und der Methoden vorgestellt und der Gemeinschaft als Module für die Sprache Python zur Verfügung gestellt. Der entwickelte automatisierte Analyse-Workflow wurde erfolgreich für Mikro-CT-Datensätze angewandt, die in Hochdurchsatzröntgenexperimenten im Bereich der Entwicklungsbiologie und Materialwissenschaft gewonnen wurden. Insbesondere wurde dieser Arbeitsablauf für die Analyse der Medaka-Fisch-Datensätze angewandt, was eine automatisierte Segmentierung und anschließende morphologische Analyse von Gehirn, Leber, Kopfnephronen und Herz ermöglichte. Darüber hinaus wurde die entwickelte Methode der 3D-Orientierungsanalyse bei der morphologischen Analyse von Polymergerüst-Datensätzen eingesetzt, um einen Herstellungsprozess in Richtung wünschenswerter Eigenschaften zu lenken

    Vacuum Effect on the Lactide Yield

    Get PDF
    The vacuum effect on the yield and purity of lactide obtained by catalytic lactic acid oligomer depolymerization was investigated. As raw material for the lactic acid oligomer synthesis the L-lactic acid aqueous solution was used. It was shown that the highest yield of raw-lactide takes place via distillation under a vacuum. The raw-lactide in all fractions was purified by recrystallization from dry ethyl acetate. The highest yield of raw-lactide is observed at a vacuum of 10 ... 15 mbar. The distillation process of raw-lactide is complicated with chemical reactions. Control of the reaction, raw materials and products was performed using DTA, gel permeation chromatography, infrared spectroscopy and high performance liquid chromatography

    3D biodegradable scaffolds of polycaprolactone with silicate-containing hydroxyapatite microparticles for bone tissue engineering: high-resolution tomography and in vitro study

    Get PDF
    To date, special interest has been paid to composite scaffolds based on polymers enriched with hydroxyapatite (HA). However, the role of HA containing different trace elements such as silicate in the structure of a polymer scaffold has not yet been fully explored. Here, we report the potential use of silicate-containing hydroxyapatite (SiHA) microparticles and microparticle aggregates in the predominant range from 2.23 to 12.40 µm in combination with polycaprolactone (PCL) as a hybrid scaffold with randomly oriented and well-aligned microfibers for regeneration of bone tissue. Chemical and mechanical properties of the developed 3D scaffolds were investigated with XRD, FTIR, EDX and tensile testing. Furthermore, the internal structure and surface morphology of the scaffolds were analyzed using synchrotron X-ray µCT and SEM. Upon culturing human mesenchymal stem cells (hMSC) on PCL-SiHA scaffolds, we found that both SiHA inclusion and microfiber orientation affected cell adhesion. The best hMSCs viability was revealed at 10 day for the PCL-SiHA scaffolds with well-aligned structure (~82%). It is expected that novel hybrid scaffolds of PCL will improve tissue ingrowth in vivo due to hydrophilic SiHA microparticles in combination with randomly oriented and well-aligned PCL microfibers, which mimic the structure of extracellular matrix of bone tissue

    Quantitative morphometric analysis of adult teleost fish by X-ray computed tomography

    Get PDF
    Vertebrate models provide indispensable paradigms to study development and disease. Their analysis requires a quantitative morphometric study of the body, organs and tissues. This is often impeded by pigmentation and sample size. X-ray micro-computed tomography (micro-CT) allows high-resolution volumetric tissue analysis, largely independent of sample size and transparency to visual light. Importantly, micro-CT data are inherently quantitative. We report a complete pipeline of high-throughput 3D data acquisition and image analysis, including tissue preparation and contrast enhancement for micro-CT imaging down to cellular resolution, automated data processing and organ or tissue segmentation that is applicable to comparative 3D morphometrics of small vertebrates. Applied to medaka fish, we first create an annotated anatomical atlas of the entire body, including inner organs as a quantitative morphological description of an adult individual. This atlas serves as a reference model for comparative studies. Using isogenic medaka strains we show that comparative 3D morphometrics of individuals permits identification of quantitative strain-specific traits. Thus, our pipeline enables high resolution morphological analysis as a basis for genotype-phenotype association studies of complex genetic traits in vertebrates

    GPU-accelerated ray-casting for 3D fiber orientation analysis.

    No full text
    Orientation analysis of fibers is widely applied in the fields of medical, material and life sciences. The orientation information allows predicting properties and behavior of materials to validate and guide a fabrication process of materials with controlled fiber orientation. Meanwhile, development of detector systems for high-resolution non-invasive 3D imaging techniques led to a significant increase in the amount of generated data per a sample up to dozens of gigabytes. Though plenty of 3D orientation estimation algorithms were developed in recent years, neither of them can process large datasets in a reasonable amount of time. This fact complicates the further analysis and makes impossible fast feedback to adjust fabrication parameters. In this work, we present a new method for quantifying the 3D orientation of fibers. The GPU implementation of the proposed method surpasses another popular method for 3D orientation analysis regarding accuracy and speed. The validation of both methods was performed on a synthetic dataset with varying parameters of fibers. Moreover, the proposed method was applied to perform orientation analysis of scaffolds with different fibrous micro-architecture studied with the synchrotron μCT imaging setup. Each acquired dataset of size 600x600x450 voxels was analyzed in less 2 minutes using standard PC equipped with a single GPU

    Quanfima: An open source Python package for automated fiber analysis of biomaterials.

    Get PDF
    Hybrid 3D scaffolds composed of different biomaterials with fibrous structure or enriched with different inclusions (i.e., nano- and microparticles) have already demonstrated their positive effect on cell integration and regeneration. The analysis of fibers in hybrid biomaterials, especially in a 3D space is often difficult due to their various diameters (from micro to nanoscale) and compositions. Though biomaterials processing workflows are implemented, there are no software tools for fiber analysis that can be easily integrated into such workflows. Due to the demand for reproducible science with Jupyter notebooks and the broad use of the Python programming language, we have developed the new Python package quanfima offering a complete analysis of hybrid biomaterials, that include the determination of fiber orientation, fiber and/or particle diameter and porosity. Here, we evaluate the provided tensor-based approach on a range of generated datasets under various noise conditions. Also, we show its application to the X-ray tomography datasets of polycaprolactone fibrous scaffolds pure and containing silicate-substituted hydroxyapatite microparticles, hydrogels enriched with bioglass contained strontium and alpha-tricalcium phosphate microparticles for bone tissue engineering and porous cryogel 3D scaffold for pancreatic cell culturing. The results obtained with the help of the developed package demonstrated high accuracy and performance of orientation, fibers and microparticles diameter and porosity analysis

    Quantitative morphometric analysis of adult teleost fish by X-ray computed tomography

    No full text
    Abstract Vertebrate models provide indispensable paradigms to study development and disease. Their analysis requires a quantitative morphometric study of the body, organs and tissues. This is often impeded by pigmentation and sample size. X-ray micro-computed tomography (micro-CT) allows high-resolution volumetric tissue analysis, largely independent of sample size and transparency to visual light. Importantly, micro-CT data are inherently quantitative. We report a complete pipeline of high-throughput 3D data acquisition and image analysis, including tissue preparation and contrast enhancement for micro-CT imaging down to cellular resolution, automated data processing and organ or tissue segmentation that is applicable to comparative 3D morphometrics of small vertebrates. Applied to medaka fish, we first create an annotated anatomical atlas of the entire body, including inner organs as a quantitative morphological description of an adult individual. This atlas serves as a reference model for comparative studies. Using isogenic medaka strains we show that comparative 3D morphometrics of individuals permits identification of quantitative strain-specific traits. Thus, our pipeline enables high resolution morphological analysis as a basis for genotype-phenotype association studies of complex genetic traits in vertebrates

    3D biodegradable scaffolds of polycaprolactone with silicate-containing hydroxyapatite microparticles for bone tissue engineering: high-resolution tomography and in vitro study

    No full text
    To date, special interest has been paid to composite scaffolds based on polymers enriched with hydroxyapatite (HA). However, the role of HA containing different trace elements such as silicate in the structure of a polymer scaffold has not yet been fully explored. Here, we report the potential use of silicate-containing hydroxyapatite (SiHA) microparticles and microparticle aggregates in the predominant range from 2.23 to 12.40 μm in combination with polycaprolactone (PCL) as a hybrid scaffold with randomly oriented and well-aligned microfibers for regeneration of bone tissue. Chemical and mechanical properties of the developed 3D scaffolds were investigated with XRD, FTIR, EDX and tensile testing. Furthermore, the internal structure and surface morphology of the scaffolds were analyzed using synchrotron X-ray μCT and SEM. Upon culturing human mesenchymal stem cells (hMSC) on PCL-SiHA scaffolds, we found that both SiHA inclusion and microfiber orientation affected cell adhesion. The best hMSCs viability was revealed at 10 day for the PCL-SiHA scaffolds with well-aligned structure (~82%). It is expected that novel hybrid scaffolds of PCL will improve tissue ingrowth in vivo due to hydrophilic SiHA microparticles in combination with randomly oriented and well-aligned PCL microfibers, which mimic the structure of extracellular matrix of bone tissue
    corecore